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This paper is a revised and expanded version of a papereehdiscrete Ponzi
scheme model’ presented @he Virtual Conference on Recent Advances in
Differential and Difference Equations and their Appliaats 9-11 June, 2020.

1 Introduction

In late 1919 Boston, Italian immigrant Charles Ponzi conddca type of investment
fraud that would soon become synonymous with his nhame: aiRocheme. The main
characteristic of a Ponzi scheme is the payment of old iovestith the money from new
investors. To attract individuals into taking part of theust; a Ponzi schemer will usually
offerarate of return that is above the market rate. Howesireee this promised rate of return
is fictitious, the fund can quickly become depleted as irarsdtegin to make withdrawals,
and soon the Ponzi schemer will run out of funds and be caogktiéir crime. This forces
the schemer to recruit an ever-increasing number of indalglinto the fraud to postpone
a collapse. Realistically however, the pool of new avaddbhds should eventually dry up,
which implies that there is an inevitable end to every Poclzese.

In the last 100 years since Charles Ponzi, the number of Beheime occurrences has
grown (Lewis, 2012). While they usually are not memorablesistories (if they even make
itinto the news at all) the effect they can have on the lifdhefscammed individuals is very
real and often devastating. Many people have lost theislfavings as a result of Ponzi
schemes. While the government often tries to reimbursestivt® lose money as a result
of a Ponzi scheme collapse, it is often unable to providectuthpensation to all affected.

Due to the substantial impact that Ponzi schemes can havéaeofives of many
individuals and economic areas, it is important to undeibtéheir economic and
mathematical underpinnings. The literature on the sushbédlity of Ponzi schemes is not
large, but there are a few key papers that attempted to uadédrthe mechanics of Ponzi
schemes. Some of them deal with how Ponzi schemes can spicetauit new individuals
(Zhu et al., 2017; Bhattacharya, 2003; Carpio, 2011). Gtteralyse the one-on-one
interactions between a single investor and schemer angl gppie theory to see when it is
most beneficial to join, quit, or expose a fraudulent invesith{Tennant, 2011).

In Artzrouni (2009), the author constructed a Ponzi Schemeéehin continuous time.
The modelis a system of three linear first order differertiplations of deposit, withdrawal,
and total money in the fund functions in time. The model hanbmnsidered as an initial
value problem (IVP). Then the author analysed the uniquetisol of the IVP to obtain
some conditions on the rates to have the Ponzi model coltafisesolvent (mathematically
speaking, it has a zero value in time or only positive valwes ime). The analysis has been
done with the use of some algebra. Motivated by this papettadthers we mentioned
above, we aim to improve the existence of Ponzi models bydiuiring a more realistic
model in discrete time. We consider the model as a bounddmg yaoblem and use the
Sturm-Liouville theory to analyse it.

The plan of the paper is as follows: in Section 2, we give sorebrpinaries so that the
reader will be familiar with the mathematical formulationghe later sections. In Section 3,
we introduce the model as a system of linear first order diffee equations. We consider
the model in two cases: a non-constant withdrawal rate armhatant withdrawal rate.
Then we focus on the model with a constant withdrawal ratesaiek the system as an
IVP. This section ends with a theorem which gives a conditiarthe rates so that the
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Ponzi model stays solvent over time. In Section 4, we coetiouwvork on the model with
a constant withdrawal rate. We introduce the boundary vateblem (BVP) where the
equation is self-adjoint. We then solve the BVP to obtaimtian results of this paper. We
state and prove a theorem which has conditions on the ratesgint end-point to obtain
that the Ponzi model collapses over time. We demonstraighlkcability of the theorems
by giving two real-life examples in Section 5. In Section & discuss advantages of the
discrete model for investors and government regulatorsate loetter and more reliable
ways of predictions.

2 Preiminaries
Leta e R,N, ={a, a+1, a+2,...}.

The backward difference operator, or nabla operg®orfor a functionf : N, — R
is defined by

(V@) =fE) - fE-1)).

The forward difference operator, or delta operétoyfor a functionf : N, — Risdefined
by

(Af) @) =f(t+1) = f()

We define discrete interval as a set of the form
N° = {a,a+1,...,b}

wherea, b € R andb — a is a positive integer.

Theorem 2.1 (Atici etal., 2019: Assume\ € R\{—1}. The first order nabla difference
equation

Vy(t) =Myt —1)+ f(t—1) for teNy, (2.1)

has the general solution

t—1
y(t) =1+ N'e+ > A+ N)"1f(s), teN, (2.2)

s=0

wherec is constant.

The following boundary value problem has been extensivelgisd in the literature (Atici
and Guseinov, 2002: Aykut and Guseinov, 2003; Anderson 208I6):

—Ap(t— 1)Ay(t — V] + a(®)y(t) = ht), te N, (2:3)

ayla—1) = Byl(a—1) =0, yy(b) + 5y () =0, (2.4)
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wherea, b € Z, o, 3,7, 6 are constants such thiat| + | 5| # 0 and|y| + |d| # 0. Here the
notationy!2l(¢) is used fomp(t) Ay(t).
Let the functionsy andy be the solutions of the corresponding homogeneous equation

—Alp(t = DAy (t —1)] +q(t)y(t) =0, te€ N,
under the following initial conditions

pla—1) =8, ¢Blla-1)=a
P(b) =6, YAb)=—.

Theorem 2.2: The solution of the nonhomogeneous equation (2.3) with@molgeneous
boundary conditions

ay(a—1) = Byl a—1) =dy, yy(b) + 5y2 (b) = da, (2.5)
is given by
dy b
u(t) = Lot) + Tolt) + 3Gl h(s), (2.6)

whereD = —W |y, ¥](t) isthe negative of the Wronskian a@d, s) is the Green’s function
of the associated BVP given by

D

o P(t)p(s), a—1<s<t<b+1.

Proof. Since the Wronskian is constant, we have
D = (a—1)p(a—1) — gla— 1)) (a— 1) = arp(a — 1) — By (a — 1)
= oA (B)p(b) — p(b)YIA(b) = yip(b) + 62 (b).

We want to point out thab is nonzero here and its proof can be found in the paper (Aicti a
Guseinov, 2002). The homogeneous solution of the equatigy(t) = C1p(t) + Catp(t),
whereC'; andCs are constants. Here we determirieandC’, by use of the nonhomogeneous

boundary conditions (2.5). Hence we have= dz andCy = 4

One can easily verify that the particular solution of the Immmogeneous equation is

b

yp(t) = D Gt s)h(s).

s=a

O

Remark 2.1: Inseveral published papers (Atici and Guseinov, 2002: Agkd Guseinov,
2003; Anderson et al. 2006), the formula given in equatioB)(@istakenly expressed as

y(t):% (t) ——w +ZGts
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Since it was given as a remark or a note in the papers, we stateproved the theorem for
reader’s convenience.

For further reading on discrete calculus, we refer the neadebook by Kelley and Peterson,
(2001).

3 Discrete Ponzi scheme model

The model has the following notations and assumptions:

Tp the promised, unrealistic interest rate
Tn the realised nominal interest rate

7 the growth rate of the deposits

Ta, the withdrawal rate in time

Tw constant withdrawal rate

Sy the amount of money the schemer possesses
Dy the cash inflow (deposit) function
Wy the cash outflow (withdrawal) function

AL.0 <rp,r;and0 < ry,
A2.0<r, <1
A3. (1 +71p)(1 —ry) # (1L +15).

We start by defining the functions that characterise theutiani of the fund controlled by

a Ponzi schemer. L&t; be the amount of money in the investment fund at the startra ti

t, W, be the amount of money withdrawn from the fund at timend.D, be the amount of
money deposited into the fund at timeThese functions are related together through the
following recurrence relation:

Siy1=(1+7)Se + Dy — Wy,

wherer,, is the market rate of return. The sequence of events praagessollows: in each
time period, the first thing the manager does is observe hoshmuoney is currently in
their fund, S;. They invest this amount in the market and earn back theicgral plus
interest,(1 + r,,)S;. Next, an amounb;, is added, representing the money being deposited
by new (and potentially some old) investors, and an aménis removed, representing
the money being taken out of the fund by investors that widledwe. Finally, at the end

of the time period, this amourtt + r,,)S; + D; — W; is observed by the manager, and
becomess; ., ; for the next time period.

We now choose a functional form for both, andW;,. First, consideD,. A simple,
workable condition is to require that deposits increasecarstant exponential rate. While
in reality the growth may be stochastic, we assume a detésticisetting for our analysis;
further research involving probabilities would enter itie field of ruin theory, and is a
possibility for the future. In a discrete setting, this meé#mat deposits will followD,; =
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(14 r;) Dy, wherer; is the exogenous growth rate of deposits. Solving this éguagsults
in the function

Dy = Do(1 + ;)"

where Dy > 0 is the exogenous initial amount of money that investors tivihe Ponzi
schemer. This deposit function is an aggregation of moma/daes not attempt to explain
the specifics of its composition. It may be that there are mo ingestors and the current
investors decide to invest more/again. It could also betttegprevious investors decide not
toinvestagain, and the new money is coming entirely fromingestors. Any intermediary
between these extremes is permissible, and this flexilaipplies to withdrawals too.

For W, we assume that in each time period the amount of money thatdehe fund
is some percentage of the cumulative amount of money thabé&as deposited and not
already withdrawn. This percentagg, is exogenously given. Furthermore, this principal
amount returned to investors is multiplied b+ r,,), wherer,, is the rate of return that
the manager promises investors and is another choice l@f@ithe fund manager,, is
decided upon by the manager at the outset of the operatidrisammnstant oveNy. The
function is constructed as follows:

Wo=0

Wi =1y, (1 +1,)Do

Wa =1y, (L+7p)D1 + (1 — 1y, ) (1 + rp)QDO)

W3 = Ty (14 75)Da + (1 — 74, ) (1 +75)2D1 + (1 — 740y ) (1 + 70, ) (1 4+ 1,)3 Do)

with the general equation being

t—1t—k—1
Wi =rw, > J] (1= rw)@+7r)" "1 +r) Dy
k=0 =1
with
t—1
W, = Z(l + rp)t_kr“,(l — 1) T Do (1 4 )",
k=0

as the special case when the withdrawal rate is constant.

These functions show that for any depabit, the amount of money withdrawn due
to that deposit principal igi time units will ber.,,; [T:57 1 (1 — 74,)(1 + )’ Dy. This
reflects two things: one, the longer money is kept in the ftimelmore interest the deposit
accrues which the manager will have to pay out, and two, theuatnof principal in the
fund decays over time due to withdrawals.

We now consider the following system of equations

) (1 B th—l)

r’wt,—l

Wi =rw,(1+1p)Di1 + 714, (1+71p W1

3.1
Sy =1 4ry)Si—1+ D1 — Wi (3.1)

Dt = (1 + T‘Z')thl.
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The nabla-difference equation of the withdrawal functi®n i

(1 B th—l)

r’wt,—l

VWi = 1w, (1+7p) Dy + (1w, (1 + 1) — Wi

The nabla-difference equation of the fund is
VS =rpSi—1+ D1 — Wiq.

Taking the delta-derivative of the fund’'s equation resuts

AVS; — (rn + & + &rn) VS, + ErnSy = VDy + [1 — —2 (1 + 1) Dy_1,

TU’t—l
) (1 B Tu’t—l)
wt—1

To put this in a self-adjoint form, we considdf,_, (1 + m), wherem; = r,, + & +
&y, Dividing both sides by this expression results in the selibint form of

whereé, = ry, (1 +1, - 1.

1 1
—AS |+ (~&7n)S
0 5 S S

71 /rw

=—0——(VD 1 % q D, ).
H§:1(1+ms)( et wa,,l( +7p)]Di—1)

Next we solve the IVFD; = (1 + r;)D;_; with initial condition D, > 0. Hence we have
Dy = Do(1 + r;)*. We replace this solution in the self-adjoint equation abtwvhave the
final form of the equation

1 1
——AS ]+
2 (1 +my) il I,y (1 +my)

(L4 r) = (1 = 2 ()] =)

-D . 3.2
0 ', (1 + my) (3-2)

7A[ (7ftrn)st

3.1 Constant withdrawal rate

If we consider,,, = constant, then the self-adjoint equation (3.2) becomes

—A[(1+m)"EVAS, ]+ (14 m) " H(=Ern) S,
=Do(rp —ri)(1+m) " (1 +r)" 1, (3.3)

wherem = r, +§+&rp, andé = (1 —ry) (1 +1p) — 1.
Next we consider the system (3.1) with the initial condiidsy > 0, Dy > 0 and
Wo=0

Wt = T’w(]. + Tp)thl + (]. + Tp)(]. - T’w)Wt,1
Sy =1 47rp)Si—1+ D1 — Wiy
Dt == (1 + ri)Dt—l-
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We start solving this system fdp, in the third equation and we have, = Dy (1 + r;)*.
Plugging this solution in the first and second equationsgjilie following system

Wi
St

We want to point out that this system provides us a sign toywed second order difference
equation. This is why we study second order difference égustvith boundary conditions
in the next section. If we continue solving the above IVP, Ww&am a solution folV; as

’I"w(l + ’I“p)DQ(l + Ti)t_l + (1 + ’I"p)(l — Tu;)Wt—l
(1 -+ Tn)St,1 -+ D()(]. -+ T’Z')til — Wtfl.

(L4rp)' (L —rw) = (A +m)

W(t) = Dol +7p)ru (L47r) (1 —ry) — (L4m)

Plugging this solution in the second equation gives theo¥alhg first order difference
equation:

St = (1 -+ Tn)St,1 -+ D()(]. —+ T’Z')t71
(L4r) A =)™ = (A4 m) !
(L+7p)(1 —ry) = (L+1)

7D()(1 —+ Tp)T'w

Next, we use Theorem 2.1 as a tool to obtain the unique salutlence we have

t—1
Sp=(1+472)" S0+ Y (147,)" """ (Ds = Wy), t €N, (3.4)

s=0

Theorem 3.1: If r, < r;, then the solution (3.4) of the IVP is positive Ni.

Proof. We claim thatS, is positive orN; if D, > W, for all t € N;. Hence we show that
D; —W; > 0forall t € N;. Then we have

(L+rp) (A —rw) = (L +r)
(T4 7p)(1 = 7w) = (1 474)
(14 7p) (1 —rw)
(1+r)"
(T4 7p)(L = 7w) = (1 474)

Dy — Wy = Do(141;)" — Do(1 + 7)1

-1

:Do(l—‘rT‘i)t 1—(1+Tp)7°u,

>0

forall t € Ny, if and only if

(L+rp)(l—ru)]’

1
1+ <1
(I+m;) B (1 —1y)
Tw(14+7p) Taw
forall ¢ € Ny.

The numerator of the last quantity is less thesince(1 + r,)(1 — r,) < 1+ ;. The
denominator is greater thdrsincer; > r,. This completes the proof. O
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4 Main results
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Letb be a positive integer such that> 1. We set the boundary conditions at O &bk .S

andsS,, respectively, both of which are non-negative real numbers.

Next we have a closer look at the discrete equatio) with boundary conditions at 0
andb on the discrete interval%. We use the Theorem 2.2 to write the solution of the BVP

in terms of its associated Green'’s function. Hence we have

Sh

S = o)

b
— + wt + X:G(t7 S)H(s)
s=1

fort € NY™, whereH (t) = Do(r, — r;)(1 +m) =t (1 +r;)t "
The Green's function for the associated BVP is

G(ts):l ps, 0<t<s<b+1
7 Grps, 0<s<t<b+1,

where
ot _ (1+ rp)t(l —7w)' = (L4 71,)"
(L47p)(1 = rw) = (1 +70)
by = (L4 7p)"(1 = 70) (L +70)" = (L4 75) (1 +1p)" (1 = 1)’
(L+7mp)(L—ry) = (L +70)
D 1+ Tp)b(l —70) = (14 7,)°

I4rp)(L—ryw)— 1 +7r,)

We note that the functions andv satisfy the following initial conditions
wo =0, ¢1=1
Uy =0, o1 =—(1+m)’.

Theorem 4.1: The functions» and possess the following properties:

e >0, tENl{H
e >0, teNy!
e D>0

o Ap; >0, teN}
o (AYy)(b—1)<0.

Proof. The proofs ofi) — iii) can be done considering two caséb+ r,)(1

(1+70) and(1+7,)(1 — 14) > (14 7).

(4.1)

—Ty) <
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Case 1If (1 +7p)(1 —ry) < (14 7,),then(l + rp) (1 — ry)" < (1 +1r,)! forall € Ny.
This implies thatp, andD are positive. To prové ), we have

by = Q= ) (Lt ra)t = (L 7)1+ 7)1 = )
b (1 + r;v)(l - Tw) - (1 + Tn)

1= (M4 r) (14 1p) (1 = ry) b0
(L+7rp)(1 —7y) = (L+70)

= (1+75)"(1 = rw)’(1 + 1)

>0

fort € Nyt since(1 +7,)"t(1 — )"t < (1 +7,)0 * forall € Nj .
The proof of Case 2 is similar.

The proofofiv) can be done considering two casdst ) (1 — ry) < land(1 +r,)(1 —
rw) > 1. In the second case, we have two subcages: r,)(1 —r,) < (1 +r,) and
(1+7rp) (1 —ry) > (1 +1,).

Case 1If (1+r,)(1 —ry) < 1,then(l +7,)(1 —ry) < 1+ r,. Hence we have
[(L+7p) (1 —ry) =1 (L + 1) (1 —10)" —ra(l+75)"

(1+ Tp)(l —7w) = (L +74)
>0

Agﬁt =

fort € Ng.
Case2Llet(1+17,)(1 —ry)>1land(l+ry)(1 —ry) <14 r,. Thenwe have
[(A+7p)(A =) = 1A +7p) (A=) —ra(l470)"

(1+ Tp)(l —7w) = (L +74)
= [+ 7)1 = 7w) = (1 +7p)" (1 = 7))

() (gt )
(I+7p)(L—ry)— (1+7r,)

Agﬁt =

>0

T (1+7r,)t

<1 and
(1+7'p)(17"w)1> ((1+7"p)t(17"w)t
subcas€l + r,)(1 —r,) > 1+ r, can be handled similarly.

for t € Ny. since ( ) < 1. The

The proof ofv) follows from 4i) and the initial condition that the functiop satisfies.
Indeed, we have

APy)(b—1) = (b)) —¢(b—1)
=—yb-1)<0.
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Corallary 4.1: The Green's functioti:(t, s) is nonnegative ot} x N§.

Corallary 4.2: If r; < rp, then the solutior, of the discrete equatio(8.3) along with
the nonnegative boundary conditionstat 0 andt = b is nonnegative oivg.

Lemma4.1: Supposg¢l +r,)(1 —r,) > 1andr; < r,. If S; in equation (4.1) satisfies

e
Sy < (A(pt So + Z w.H (4.2)

thensS, in equation (4.1) satisfies the inequalitiesS;) (b — 1) < 0 and(A2S,)(b— 1) <
0.

Proof. We first prove that(A%S;)(b — 1) < 0. Indeed, we have tha$, satisfies the
following equation

A28, 1 — (L4 7)1+ 1) (1 —7y) — 1)AS, 4
+((1 + rp)(l - Tw) - 1)T7LSt = DO(Ti - rp)(l + Ti)t_l
If we solve this equation foA2S; , and replace by b, we have
(AQSt)(b 1) =(1+r)(1+ r;v)(l —1w) — 1)(AS)(b—1)
—((1+7p)(1 = 7w) = 1)rnSp + Do(r; — rp) (L +14)"7"

Applying the A operator in equation (4.1) and then replacifay b — 1, we have

(AS)(b 1) = 2 (Ap) (b~ 1) 43)

s=1

The inequality in equation (4.2) implies thakS;)(b — 1) < 0. Hence we have the desired
result. O

Theorem 4.2: Supposél +r,)(1 — r,,) > 1 andr; < rp. If there existg, such that the
unique solutionS; in equation (3.4), of the IVP with the initial conditicty satisfies (4.2)
forall ¢t € Ny, 41, then the funds; in equation (3.4) is collapsed over time.

Proof. Letc € Ny 41 such that the unique solutidf) in equation (3.4), of the IVP with
the initial conditionS, satisfies

c—1

1/1c71
Se. < 7(A<pt)(c — 1) [S() + szzlcpsH S
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Here we have two cases to consider:

e if S, is not positive, then there is nothing to prove.

e if S, is positive, then we considél andS. as boundary conditions.

In addition, S; solves the equation if3.3). Then by Lemma 4.25; is decreasing and
concave down at — 1. This behaviour of the solution at— 1 indicates that the fund is
going down. In an iterative way, the solutiéi can be analysed far> ¢ as we did for the
pointe. The graph of5; will be decreasing and concave down§f 4, . It follows that the

fund S; will be collapsed over time. O

5 lllustrative examples

In this section, we consider some realistic rates by anadyBionzi schemes that have
happened in real-life and estimating the model parameters.

Example5.1: On the heels of a Ponzi scheme that cheated investors out of
102 million dollars, in 2018 the Securities and Exchange @ission (SEC)
charged a former insurance broker with defrauding inexpeed retail investors
(https:/iwww.sec.gov/litigation/litreleases/201844 73.htm). By crudely estimating the
rates of this fraud from available information, we have tokofving construction of the
problem.

Estimated ratesSy = 0, 7, = 0, dp = 51475.5, r; = 0.0369027, r, = 0.0466351, 1, =
0.0207987.

We first note that the market ratg is not actually0, but because the case information
seems to indicate that the schemer did not invest any of theds into any investment
opportunities atall, we can sgt = 0 toreflectthis. Second, note that+ r, ) (1 — r,,) > 1
andr; < rp. In this problem the time unit is a quarter of a year. Let usrabefi

1/} b—1
Ly = —t JH(s).
Ve 1) =)
Then the solutiord; of the IVP in equation (3.4) satisfies the following:

Sy > Ly, b<66
Sb<Lb, b > 66.

Theorem 4.3 implies that; in equation (3.4) will eventually become zero. Indeed, &gpsle
occurs af2 < t < 93.

Example5.2: In 2018, the Securities and Exchange Commission (SEC) ebarg
a San Diego company, its president, and his business pautithr running a
multimillion dollar Ponzi scheme that defrauded hundredsiraividual investors
(https://www.sec.gov/litigation/litreleases/20184293.htm).

Estimated ratesSo = 0, r,, = 0, dp = 42259.6,; = 0.108865,r, = 0.1, 1, = 0.127074.
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We note that(1 + r,)(1 —r,) < 14+ r; andr, < r;. In this problem the time unit is a
month. By Theorem 3.1, we conclude that if the SEC had not ghddwn, this Ponzi
scheme would have remained solvent over time.

6 Conclusion

There exists an incorrect notion about the short, or at fes, longevity of Ponzi schemes.
Most people assume that they must fail. However, we haveslttuwis not the case. In this
paper, we constructed a model that shows how a Ponzi schenfestéheoretically forever
when the deposit growth, withdrawal rate, promised ratetirn, and market rate of return
obey certain inequalities. Granted, in the real-worldeheists shocks that could cause the
system to collapse, but these inequalities still give us@gdea of how a Ponzi scheme
can last a very long time. This question of longetivity, vehiinportant when discussing
investment frauds such as Ponzi schemes, is also extremelyrtant to discuss when
analysing governmental pension plans, such as Social i8ecur

Writing the modelin discrete time makes the model moresgalin the sense that money
inflow and outflows cannot be instantaneous. There is alwayg samount of time between
new investors joining and old ones leaving, and when infdionas given to economic
agents, it is often done so in a discrete manner (for exampethly investment reports
or quarterly GDP calculations). It is not intuitive to thiokthe process’s mechanisms as
instantaneous. For example, Artzrouni’s continuous nisdstimation ofr; = 7.187 (for
the case of Charles Ponzi), which can be called "the instaotas rate of increase in new
investments/deposits”, lacks essence because investai@miot happen instantaneously.
It is only by integrating the deposit function that we reachirterpretation. In contrast,
our discrete model’'s estimate of = 0.02 is more descriptive because not only does it
have meaning from summing the deposit function, it alsg tetlhow new investments will
increase from one defined time period to the next; there ismuguity with the meaning
of "instantaneous".

Similarly, these critiques apply to the withdrawal functiesides the points made
above, there is an additional comment to make, specificalbhutthe rate of withdrawal,
rw. IN the continuous modet;,, is simply a parameter that controls the magnitude of
withdrawals; the greater,, is, the more money is ‘instantaneously’ removed from the
fund. However, in our discrete model, receives another property; it is a percentage. It
represents the proportion of people/money that leavestaaelperiod. One cannot get this
interpretation from certain continuous models, as eviddiy Artzrouni’s estimate (again
regarding Charles Ponzi) of, = 1.47.

While not perfect, a discrete model is an attempt to accoamaflack of realism in
a continuous account of investment operations. With funtesearch, the continuous and
discrete models can be unified into model that can work foitrary time scales. For the
definition and the theory for time scales, we refer the reta@book (Bohner and Peterson,
2001). Hopefully, expanding our understanding of Ponzésoidynamics can lead to better
prevention and correction of these types of crimes.
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