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I study optimal progressive income taxation in an incomplete markets model

with a fat-tailed idiosyncratic income growth process with cyclical skewness. The

process follows a two-state regime switching process representing recession and

expansion. A Ramsey planner is constrained to two log-linear tax and transfer

functions, one for each aggregate state, to allow state-dependent tax progressivity.

I take recently created computational techniques used for aggregate MIT shocks

and adapt them to work for regime switching processes. I find that the overall

negative skewness of income growth leads to higher optimal progressivity, but

how it is spread between aggregate states barely matters; progressivity should be

higher in expansions and recessions, but allowing policy to be state-dependent

has negligible effects on social welfare. I also find that the welfare change from

current to optimal policy in a misspecified model without skewed and fat-tailed

income growth is inflated to 2.9% compared to 0.9% using the correctly specified

model.

I. Introduction

For many countries, one of the government’s responsibilities is to promote the general welfare

of its populace. A common way a government does this is by engaging in income redistribution

financed by progressive income taxes. An extensive literature has studied how redistribution and

income taxes should be structured, as while taxation can both increase redistribution and help

insure against idiosyncratic income shocks, it can also create distortions by disincentivizing some

individuals from working and saving. The literature that accounts for the heterogeneity of house-

holds usually excludes aggregate fluctuations, meaning their calculated optimal level of progressivity

does not factor in business cycles. However, it is well documented that the distribution of idiosyn-

cratic income shocks differs between economic expansions and recessions.1 Because income growth

risk—and to an extent inequality—vary over the business cycle, there are potential welfare gains

to having the progressivity of the government’s tax and transfer system vary as well.

∗Department of Economics, University of Houston (email: wrbennett@uh.edu)
1See Storesletten, Telmer, and Yaron (2004) and Guvenen, Ozkan, and Song (2014) for classic examples.
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To investigate this possibility I conduct a quantitative analysis of optimal fiscal policy in a

heterogeneous-agent incomplete markets (HAIM) economy with aggregate shocks. I expand upon

the standard model in two main ways.

First, the government has access to a log-linear tax and transfer schedule for income, as opposed

to the usually imposed flat tax rate and lump sum transfer. This tax and transfer schedule will be

represented by a simple two parameter function of income where the government’s choice variable

will be the parameter controlling the progressivity of the schedule. Moreover, the government can

have different schedules (functions) for different aggregate states of the economy. Specifically, I

model business cycles as a two-state Markov process representing expansion and recession and the

government can have separate tax and transfer schedules for each state.2

Second, the standard AR(1) individual productivity process is augmented to incorporate recent

findings in the income growth literature. As documented in multiple works by Fatih Guvenen, such

as Guvenen, Ozkan, and Song (2014) and Guvenen et al. (2021), analysis of US social security

administration (SSA) data reveals income growth has substantial skewness and kurtosis (fat-tails).

High kurtosis means that experiencing a very large increase or decrease in income is much more

likely then previously thought. High skewness means that while the majority of individuals will

experience positive income growth and be on the right side of the distribution, the overall shape of

the distribution is stretched to the left so that the unlucky individuals who do happen to experience

a negative shock will get a large decrease relative to the increases of the people on the right

side.3 Furthermore, the amount of skewness is on average twice as high in a recession than in an

expansion.4 This is in contrast to the standard model, which assumes income growth has zero

skewness and zero kurtosis, with innovations coming from a normal distribution. The standard

model also doesn’t incorporate any state-dependence on the distribution of the innovations.

Figure 1 visually summarizes this phenomenon. While productivity growth is approximately

normal when switching from recession to expansion (the RE transition), the other three possible

aggregate transitions all show significant left-skewness and fat-tails. While the left-tails of the ex-

pansion to expansion (EE) and recession to recession (RR) productivity growth distributions are

visible, it is impossible to adequately overlay the left-tail of the expansion to recession (ER) distri-

bution on the same graph. While it appears that the ER distribution is just heavily concentrated

around zero, it in fact has the highest amount of skewness and kurtosis, with a significant mass

2Modeling aggregate fluctuations as a discrete Markov process has a detailed history. See Hamilton (1990) for a classic
application of regime switching estimation. Krusell and Smith (1998) uses a two state process for both aggregate and individual
productivities due to computational restrictions, but I am able to use a finer grid for individual productivity and still do optimal
policy analysis.

3Holding the mean at zero and variance constant.
4The mean is also different between the two states, while variance and kurtosis are about the same.
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below -2 where the other distributions don’t. For exposition, a draw of -2 from one of these distri-

butions means that annual income changes by e−2 − 1, i.e. it falls by 86%. This means that only

when entering a recession does a significant proportion of households experience 90%-100% declines

in labor earnings. The start of a recession is also marked by a drastic decline in any meaningful

productivity increases.

Figure 1—State-Dependent Skewed and Fat-Tailed Productivity Growth Innovations

Notes: This figure plots the four aggregate state-dependent distributions for annual log productivity change. They are
normalized to each have a mean of zero to focus on the distributions’ shapes. They are calibrated in section III.A to match
the autocorrelation, mean, standard deviation, standardized skewness, and standardized excess kurtosis of income growth in
expansions and recessions. In the legend, the first letter for a line is the current aggregate state, and the second letter is
the aggregate state next period. While truncated for the graph, the densities of the tails for most of the distributions stay
significantly above zero, especially ER’s left-tail. ER’s density around zero is also cut-off at the top but extends significantly
higher than three.

The skewness and fat-tails of productivity growth shocks have a priori unclear implications for

optimal tax progressivity. Ceteris paribus and holding the mean and variance constant, excess

kurtosis likely exacerbates income/consumption inequality, as the poor become poorer and the

rich become richer despite there being a larger middle class. This would lead to greater desired

redistribution and tax progressivity. However, the dominant left tail caused by negative skewness
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means there are many more severely poor individuals than there are richer ones, so much of the

redistribution won’t come from the super-rich, but instead from the larger middle class.

Using my model, I quantitatively solve for the socially optimal level of income tax progressivity

and analyze the effects of state-dependent income growth skewness and progressivity. I calibrate

the model using US data and study these effects on the aggregate variables as well as the responses

of the heterogeneous agents via a simulated sequence of expansions and recessions.

Models with heterogeneous agents and aggregate shocks are typically intractable or very compu-

tationally intensive to solve due to the distribution of agents being an infinite-dimensional object

that must be tracked over time. This makes doing quantitative policy analysis often extremely dif-

ficult or impossible.5 To circumnavigate this issue, I utilize recent advancements in computational

economics and adapt them to regime-switching processes to more quickly solve my model, allowing

for optimal policy analysis.6

I find that the optimal tax and transfer policy is to have moderately more progressivity in

expansions than in recessions, yet both should be the lower than the current (and historically

average) US level. Furthermore, when solving the model with skewed business cycles, I find optimal

progressivity is significantly positive, but if income growth shocks come from normal distributions

than the income tax should be approximately flat/proportional.

Several papers in the taxation literature, such as Conesa and Krueger (2006) and Conesa, Kitao,

and Krueger (2009), and Heathcote, Storesletten, and Violante (2020) look at optimal income tax

progressivity, but do so by only analyzing policy in the steady state or by shutting down aggregate

shocks. Others look at one time policy changes and transitional effects, such as in Krueger and

Ludwig (2013), Bakis, Kaymak, and Poschke (2015), Ferrière et al. (2021), Dyrda and Pedroni

(2023), and Boar and Midrigan (2021). A related literature looks at optimal progressive taxation

in models with aggregate shocks, but restricts the tax function to a (usually fixed) flat tax rate

with a lump sum transfer, such as Bhandari et al. (2021) and Angelopoulos, Asimakopoulos, and

Malley (2019).

Closer to this paper, McKay and Reis (2021) solves for the optimal non-varying income tax

progressivity in a model with aggregate fluctuations and unemployment and Zoi (2020) solves for

the optimal path of progressivity given a one time shock to aggregate productivity with nonconstant

idiosyncratic variance. Unlike these (and the previously mentioned) papers, I model aggregate

productivity as a two state process to more accurately account for the patterns of fat-tailed cyclical

skewness of income risk observed in the SSA data, as well as take into consideration the government’s

5See Krusell and Smith (1998) for a classic discussion.
6Specifically the techniques of Boppart, Krusell, and Mitman (2018) and Auclert et al. (2021).
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possible inabilities to frequently change the tax system.

The rest of this paper is organized as follows. Section II presents the model, its agents, and

its equilibrium. Section III explores quantitative exercises including calibration, computation, and

results. Section IV concludes. V contains appendices.

II. The Model

The quantitative model starts out similarly to the heterogeneous-household models of Aiyagari

(1994) and Krusell and Smith (1998). Households face uninsurable productivity risk due to a no-

borrowing constraint under incomplete markets. I depart from this benchmark in two important

ways. First, I model aggregate uncertainty in the form of a two-state regime switching process

that affects the distribution of productivity shocks. Second, the government has a log-linear tax

function that it uses to finance required government expenditures and facilitate redistribution.

A. Households

The economy is populated by a continuum of households of measure 1. Facing both idiosyncratic

productivity risk and aggregate uncertainty, households make consumption, savings, and labor

decisions across time. Households are indexed by i in the unit interval. The idiosyncratic state

of a household consists of its productivity eit and capital savings kit. Households derive utility

from consumption, cit, and disutility from working, hit, according to their lifetime expected utility

function,

(1) Ui = E0

∞∑
t=1

βtu(cit, hit),

and their contemporaneous utility function,

(2) u(cit, hit) =

(
cit − ψ

h1+φ
it
1+φ

)1−θ

1− θ
.

where β is the discount factor, θ controls the coefficient of relative risk aversion and the inverse

of the elasticity of intertemporal substitution, φ is related to the inverse Frisch elasticity of labor

supply, and ψ is a scaling parameter capturing the relative importance of leisure to consumption.

Households are subject to a budget constraint,

(3) cit + kit+1 = λt(Wteithit)
1−τt + (1 +Rt − δ)kit,
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and a borrowing constraint,

(4) kit+1 ≥ k
¯
,

where Wt is the wage rate of labor, Rt is the rental rate of capital, δ is the depreciation rate of

capital, k
¯
is the borrowing constraint, and λt and τt are fiscal policy variables set by the government

that control the level and progressivity of the income tax, respectively.

Let y0it ≡ wteithit be a household’s gross labor income (“pre-tax income”). Then a household’s

net labor income after taxes and transfers occur (“post-tax income”) is given by yit ≡ f(y0it) =

λt(wteithit)
1−τt , where f is the log-linear tax function. This functional form for net income is

a common representation in the literature of a progressive income tax system.7 I will briefly

describe some of the function’s properties. τ is the “progressivity parameter” while λ is the “level

parameter”. If τ = 0, the the tax system is neither progressive nor regressive and each household

faces the same average and marginal tax rates of 1 − λ. Any τ between (0,1] makes the tax and

transfer system progressive in the sense that the marginal tax rate is larger than the average tax rate

for any income level. Depending on λt, τt, and y
0
it the household may have more, less, or the same

amount of income before and after taxes and transfers. Specifically, there is a threshold ȳt ≡ λ
1
τt
t

such that if y0it < ȳt, then y
0
it < yit, and vis versa. If τ = 1, then the system is perfectly progressive,

as every household will have the same post-tax income regardless of their pre-tax income. Finally,

if τ < 0, then the tax system is regressive, as marginal rates decline with income.

B. Aggregate Fluctuations

The aggregate state z follows an exogenous Markov process with two possible states and four

transition probabilities:

(5) Πzz′ = Pr(zt+1 = z′|zt = z).

The two states are z = E, representing the economy being in an expansion, and z = R, representing

the economy being in a recession. In this model there is not a notion of total factor productivity

(TFP). Instead, aggregate shocks only indirectly affect the economy through their impact on 1)

the distribution of shocks to individual productivity, and 2) potential state-dependent government

tax policy.

7See Feldstein (1973) for a classic example and Heathcote, Storesletten, and Violante (2017) for a modern one.
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C. Individual Productivity

A large majority of macroeconomic models similar to this one have productivity shocks come

from normal distributions. Unfortunately, doing this imposes a restriction of zero skewness and

kurtosis on productivity/income growth, which contradicts the recent literature results on US

social security administration income data. To allow income growth to be skewed and fat-tailed,

the normal distribution restriction must be lifted.

In empirical work such as Guvenen, Ozkan, and Song (2014), Guvenen et al. (2021), and similar

papers, each assume aggregate states have income growth shocks come from a mixture of two

(sometimes three) normal distributions. The main appeal of these mixture distributions is its

potential interpretation; with some probability, you keep your current job and experience a small

change to income (such as a wage raise), represented by a small variance for that specific normal

distribution. With one minus that probability you could lose or quit your job and either fail to

quickly find another or succeed in finding a much better one, represented by a large variance for

that specific normal distribution. These probabilities being dependent on the aggregate state allows

the likelihood of drawing from the higher variance normal distribution to be higher in recessions.8

While having a nice interpretation, mixture models have a drawback when incorporated in com-

putational models. Assuming a mixture of only two normal distributions, the first (relatively minor)

issue is that it has five parameters (for each of the four aggregate transition possibilities): the prob-

ability of which normal to draw from, two mean terms, and two variance terms. This is one more

than needed to control for four moments (mean, variance, skewness, and kurtosis), and can worsen

the performance of moment matching algorithms when discretizing the productivity process. The

second (relatively major) issue is if the true distribution posses considerably fat-tails, a mixture

of two normal distributions will have difficulty capturing those tails. It would require a mixture

of three or more to get a good approximation, in which case the number of required parameters

becomes restrictively high and interpretation is lost.

To avoid these issues, I have the state-dependent distribution come from a four-parameter function

that can more easily create skewness and fat-tails. I assume the log of individual productivity eit

follows an AR(1) process with the distribution of innovations dependent on the transitioning of the

8The means of the normal distributions are also different but their discussion is removed for brevity.
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aggregate state:

ln(eit) = ρ ln(eit−1) + νit,(6)

νit ∼



SU (ξEE , ζEE , γEE , ηEE) if zt = zE and zt−1 = zE

SU (ξRE , ζRE , γRE , ηRE) if zt = zE and zt−1 = zR

SU (ξER, ζER, γER, ηER) if zt = zR and zt−1 = zE

SU (ξRR, ζRR, γRR, ηRR) if zt = zR and zt−1 = zR

,(7)

where ρ is the persistence/autocorrelation of log productivity and νit is its innovation. SU is the

Johnson’s SU -distribution, and the multiple ξ, ζ, γ, and η control the mean, variance, skewness, and

kurtosis of the distributions, respectively. See Appendix V.A for more details about the Johnson’s

SU -distribution.

The counterfactual scenario analyzed later will be to restrict the innovations to come from normal

distributions:

(8) νit ∼



N (µEE , σ
2
EE) if zt = zE and zt−1 = zE

N (µRE , σ
2
RE) if zt = zE and zt−1 = zR

N (µER, σ
2
ER) if zt = zR and zt−1 = zE

N (µRR, σ
2
RR) if zt = zR and zt−1 = zR

.

Importantly, despite the shocks coming from multiple state-dependent distributions with different

means and variances, this set-up restricts both the skewness and excess kurtosis of productivity

growth in both aggregate states to be 0.

D. Firms

I make the standard assumption of there being a continuum of measure 1 of firms that can be

aggregated into a single representative firm. This representative firm demands capital and labor

from the households and produces output according to the Cobb-Douglas production function

(9) Yt = F (Kt, Lt) = Kα
t L

1−α
t ,

where Yt is output, Kt is capital, Lt is effective labor (a function of a household’s productivity and

labor choice), and α is capital’s share of output. The firm maximizes profits and pays capital and

labor their respective marginal products.
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E. Government

The government seeks to solve a Ramsey problem. It maximizes a utilitarian social welfare

function,

(10) Ω = max
{τt}∞0

E0

∫ 1

0
Ui di,

by setting the path of the tax progressivity parameter. This path is set ex ante such that τt is

exclusively dependent on zt: for both possible states zE and zR, the government chooses τE and

τR such that

(11) τt =

τE if zt = zE

τR if zt = zR
,

Therefore, the government is constrained to not be able to actively change its tax policy from one

period to the next if the aggregate state of the economy has not changed. Full commitment is

assumed and the households know this.

While other papers in the literature focus on a single value for τ to act as an automatic stabilizer

as in McKay and Reis (2021) or allow τ to change continuously as in Zoi (2020), I stay between

these two extremes; restricting τ to one value ignores the government’s ability to engage in any

active fiscal policy, while allowing τ to change every period ignores the government’s institutional

frictions preventing it from enacting certain policies or enacting them too quickly. My approach

takes both these issues into account, and allows for better analysis of the interactions between

income tax progressivity and cyclical income risk.

The government is also subject to the following budget constraint:

Gt =

∫ 1

0
y0it − yit di(12)

=

∫ 1

0
Wteithit − λt(Wteithit)

1−τt di.(13)

The left-hand side is exogenous government spending. I assume it has no productive nor utility

purposes to focus more on the redistributive aspects of progressive income taxation. This spending

is a constant fraction g of total output Yt. The right-hand side is (net, after redistribution) revenue.

To focus on the role of progressivity, I follow McKay and Reis (2021) and similar papers and ignore
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the possibility of government borrowing.9 The government adjusts λt, the parameter governing the

level (not progressivity) of the income tax, each period residually to make the budget constraint

hold. This leaves τE and τR as the government’s only choice variables.

F. Market Clearing

There are three markets in this economy that must clear at all times. The first is the rental

market for capital. The stock of capital used in production must equal the aggregate stock of

capital held by households:

(14) Kt =

∫ 1

0
kit di.

The second market is the labor market. The amount of effective labor used in production must

equal the aggregate product of household productivity and household labor supply:

(15) Lt =

∫ 1

0
eithit di.

This leaves the market for the consumption good, which clears when

(16) Yt = Ct +Kt+1 − (1− δ)Kt +Gt,

where Kt+1 − (1− δ)Kt is net investment.

G. Equilibrium

To solve dynamic equilibrium models numerically, it is useful to use recursive methods. Using

recursive language involves expressing behavior and prices as a function of individual and aggregate

state variables instead of time.

The recursive value function of a household for a given tax policy τ(z) is

(17) V (e, k, z,D) = max
c, k′, h

{
u(c, h) + βE

[
V (e′, k′, z′, D′)|e, z

]}
9This is why households only have access to capital and not bonds.
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subject to

c+ k′ = λ(Weh)1−τ + (1 +R− δ)k,(18)

k′ ≥ k̄,(19)

D′ = Γ(D, z, z′)(20)

where Γ denotes a transition operator that defines a law of motion for the cross-sectional distribution

of households, D(e, a).

The recursive competitive equilibrium for a given tax policy τ(z) consists of the value function

V (a, e, z,D), policy functions c(a, e, z,D), k′(a, e, z,D), and h(a, e, z,D), aggregate capital, effective

labor, and government spending K(z,D), L(z,D), G(z,D), input prices W (z,D) and R(z,D),

taxation level λ(z,D) and a law of motion for the distribution Γ(D, z) such that:

1) given W , R, λ, and τ , the value function V and the individual policy functions c, k′, and h

solve the households’ decision problem.

2) the prices of the production inputs equal their marginal productivities, W = FL(K,L) and

R = FK(K,L).

3) the input markets clear, K =
∫
k dD and L =

∫
eh dD.

4) the goods market clears and the aggregate resource constraint is satisfied, Y = C+K
′ − (1−

δ)K +G.

5) the government balance its budget, gY =
∫
Weh− λ(Weh)1−τ dD.

6) Individual and aggregate behaviors are consistent, D′ = Γ(D, z, z′).

Using this definition of equilibrium, I can define what optimal policy means. In terms of the

household value function, the government’s social welfare function is

(21) Ω = max
τ(z)

E

∫
V (a, e, z,D)dD.

The optimal recursive competitive equilibrium (the Ramsey plan) for the optimal tax policy τ∗(z)

consists of the social welfare function Ω and the components of the recursive competitive equilibrium

for a given tax policy such that:

1) Given all the other components, τ∗(z) solves Ω.

2) τ∗(z) and all the other components are a recursive competitive equilibrium for τ∗(z).
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III. Quantitative Analysis

A. Calibration

The unit of time is one year.10 All data and targeted moments are for post-war US. Table 1

provides a list of all parameters values used for the analysis of the model. The parameter values

come from a mix of internal and external calibration and are set to match moments of the model’s

steady-state.11

Table 1—Calibrated Parameters

Interpretation Value Target / Source

Preferences

β Discount factor 0.945/0.955 Capital-output ratio of 2.7
θ Relative risk aversion scaler 2.170/2.177 Mean relative risk aversion of 3

ψ Labor disutility weight 0.919/0.798 Normalize L to 1

φ Adjusted inverse Frisch elasticity 1.442 Inverse Frisch elasticity of 2

Household Savings Choice

k
¯

Borrowing constraint 0 Standard
δ Capital depreciation 0.094 Investment-output ratio of 0.255

Firms

α Capital share 0.36 Standard

Government

g Government fraction of output 0.18 Mean Federal Outlay % of GDP

τ Income tax progressivity 0.186 HSV (2020)

Aggregate State Transitions

ΠEE Prob. of staying in an expansion 0.771 NBER business cycle dating
ΠRR Prob. of staying in a recession 0.421 NBER business cycle dating

Notes: Some parameters have two values because they are affected by the distributions of the individual productivity innova-
tions: the left number is when the innovations come from a Johnson’s SU distribution and the right is when innovations come
from a normal distribution. The Target/Source numbers are the values in steady-state. Standard means it’s a commonly used
value and near the middle of the range of used values. For the business cycle dating, I follow the approach of Guvenen, Ozkan,
and Song (2014) to be consistent with their estimated moments.

The discount factor β is set to match a capital-output ratio of 2.7. The relative risk aversion

controlling parameter θ is set to match an average relative risk aversion of 3, a commonly assumed

value. The labor disutility weight ψ is set to normalize the aggregate effective labor L to 1.

The calibration of these three parameters depends on the household productivity process. When

shocks come from a Johnson’s SU distribution, the parameter values are 0.945, 2.170, and 0.919,

respectively. When they come from a normal distribution, they are 0.955, 2.177, and 0.798. While

10A shorter unit of time, such as one quarter, would be ideal. However, because the amount of money a household owes the
government is based on total income earned over the entire year, this is not feasible without significant alteration to the tax
function and household problem.

11Because of the Markov process nature of the aggregate shocks, there is not a steady-state in the usual sense. This is
discussed later in section III.B.
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the risk aversion values are very close, the discount factor and labor disutility weight are significantly

different.

The differences in these two parameter values imply two things. First, considering β, ceteris

paribus, an economy with skewed and fat-tailed productivity growth innovations will cause house-

holds to save more on average than in an economy with normal innovations. This makes sense,

since increased volatility of productivity in an economy with incomplete markets leads to more cap-

ital accumulation due to the desire for precautionary savings. Here, the increase in precautionary

savings comes not from increased variance, but specifically from increased tail risk.

Similarly for ψ, ceteris paribus, an economy with skewed and fat-tailed productivity growth

innovations will cause households to work more on average. This again reflects the household’s

desire to earn more income to be more self-insured in the case of a significant negative shock to

productivity.

Regardless of the productivity process, θ does not equal the assumed average risk aversion of 3.

The reason these numbers are not the same is due to how consumption and labor are linked in the

household utility function.12 A household’s degree of relative risk aversion R(c) is given by

(22) R(c) ≡ −cucc
uc

= θ
c

c− ψ h1+φ

1+φ

.

Because of the remaining disutility of labor term, R(c) ̸= θ as it does for some other kinds of

preferences. Instead, equation 22 implies that households with a higher consumption-labor ratio

are less risk averse.

Similarly, the progressive tax-adjusted inverse Frisch elasticity is set to 1.442 to match an inverse

Frish elasticity of 2. This discrepancy in values comes from the effect of the log-linear tax function

on a household’s labor supply,

(23) h =

(
(1− τ)λ(We)1−τ

ψ

) 1
φ+τ

,

because the Frisch elasticity, ∂lnh
∂lnw , is the exponent on the wage rate, 1−τ

φ+τ , which depends on the

the degree of progressivity.

The capital depreciation rate δ is set to 0.094 to match an investment-output ratio of 0.255. I

assume a borrowing constraint of k
¯
= 0 and a capital share of output of α = 0.36. The government

fraction of GDP g is set equal to the average federal net outlays as a percent of GDP, 0.18. The

12The cross-derivative of utility with respect to consumption and labor is not zero.
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income tax progressivity controlling parameter τ is taken from Heathcote, Storesletten, and Violante

(2020), who finds an estimate of 0.186 by regressing the log-difference between pre-government

income and taxes minus transfers on log-disposable income.

Calibrating the aggregate state transitions involves calculating the probability that the economy

will be in an expansion/recession next period given that it is in an expansion/recession this pe-

riod. Because the unit of time is one year, I must take a stand on what years are expansionary

and recessionary. I use the exact same classification system as Guvenen, Ozkan, and Song (2014)

to be consistent with their estimated moments of individual income growth. Within their sample

extending from 1977 to 2011, the years 1980-1983, 1991-1992, 2001-2002, and 2008-2010 are con-

sidered recessionary. With these ranges and the properties of a Markov process, I calculate that

the probability ΠEE of being in an expansion next year given an expansion this year is 0.771: the

probability ΠER of being in a recession next year given an expansion this year is 1−ΠEE = 0.229:

the probability ΠRR of being in a recession next year given a recession this year is 0.421: the

probability ΠRE of being in an expansion next year given a recession this year is 1−ΠRR = 0.579.

The final part of the calibration strategy is the individual productivity process. The parameter

values are in Table 6 in Appendix V.B. The parameters are calibrated using the method of sim-

ulated moments (MSM) to match the average mean, standard deviation, standardized skewness,

and standardized excess kurtosis for individual productivity growth in expansions and recessions.

Table 2 reports the statistics from the data and from simulations of the productivity process using

Johnson’s SU and normal shocks after finding the best parameter values. While normal shocks

can perfectly match the standard deviations, as expected it is unable to match the skewness and

kurtosis. The Johnson’s SU shocks have no problem matching the higher moments. While both

struggle to match the means, this is less important than adequately matching the other moments

because productivity will be normalized to have an unconditional mean of 1.

B. Computation

Models with heterogeneous agents, incomplete markets, and aggregate fluctuations are notori-

ously difficult to solve, due to the entire distribution of households being an infinite-dimensional

state variable that each household and the government must track. However, recent advancements

in numerical methods have allowed economists to solve these types of models more quickly and

accurately. I use the now standard techniques of Carroll (2006) and Young (2010) to solve for the

model’s steady state. From there I adapt the techniques of Boppart, Krusell, and Mitman (2018)

and Auclert et al. (2021) to solve for the model’s transition paths caused by aggregate fluctuations.
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Table 2—Targeted Moments of Income Growth

Moment Data SU Model Normal Model

µE 0.033 0.007 0.007
σE 0.510 0.536 0.510

sE -0.830 -0.819 0.004

κE 11.930 12.020 -0.073
µR -0.008 -0.018 -0.018

σR 0.510 0.497 0.510

sR -1.680 -1.6767 0.002
κR 11.930 11.993 -0.215

Notes: This table reports statistics for the mean, standard deviation, standardized skewness, and standardized excess kurtosis
of productivity growth in expansions and recessions. The moments estimated from data come from Guvenen, Ozkan, and Song
(2014) and Guvenen et al. (2021). The moments from the models are the estimates from simulations after solving for the
productivity parameters.

To computational solve the model, I must discretize the household productivity process. To do

this, I fix a discrete grid of values for e and use the method of Tauchen (1986) to calculate the

matrices of individual transition probabilities for each aggregate transition, ΠeEE , Π
e
ER, Π

e
RE , and

ΠeRR, where

(24) Πezz′ = Pr(e
′ |e, z, z′

).

for each combination of e and e
′
using the discrete grid.

Because the aggregate shocks come from a Markov process, the standard notion of steady-state

doesn’t apply to my model. Instead, the relevant steady state is when the transition matrix for

household productivity does not depends on z. This aggregate state-independent transition matrix

is given by the weighted average of the state-dependent transition matrices,

(25) Πess = πE(ΠEEΠ
e
EE +ΠERΠ

e
ER) + πR(ΠRRΠ

e
RR +ΠREΠ

e
RE),

where πE and πR are the unconditional probabilities for expansion and recession, respectively.13

Similarly, the steady-state degree of progressivity is

(26) τss = πEτE + πRτR,

From there I utilize a version of the endogenous grid method of Carroll (2006) to obtain the

stationary value function Vss and consumption css, savings a
′
ss, and labor hss policy functions of

13If the length of the simulation path discussed later, T , is not large enough, one may want to use the aggregate transition
probabilities and unconditional probabilities implied by the simulation instead of the true values. This can help avoid numerical
instability when calculating the transition paths.
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the households and use said policy functions and the lottery method of Young (2010) to obtain the

stationary distribution, Dss.

After the stationary distribution is calculated, I can look at how a change in aggregate produc-

tivity affects every other variable, both at the time of the change and all future periods. This is

usually formulated as an MIT shock, such as in the recent advancements of Boppart, Krusell, and

Mitman (2018) and Auclert et al. (2021). They suppose that an exogenous one-time shock to a

aggregate variable (such as TFP or the interest rate) occurs while the economy is at its steady

state such that D1 = Dss and the economy will return to its steady state after T periods so that

VT+1 = Vss.
14 To do this, the value and policy functions are iterated backward to get the paths of

these functions. Once the path of the savings policy function is known, a path for the distribution

is obtained by forward iteration. The paths of all relevant aggregate variables can be calculated

from the paths of the policy functions and distributions, and certain aggregates are manipulated

to ensure all market clearing conditions hold. If any markets in any period are not cleared within

some tolerance level, then the path(s) of one or more endogenous variables are updated and the

process is repeated until convergence.

Their technique as is does not work for my model, as 1) my aggregate fluctuations cannot be

expressed well as an MIT shock, and 2) there is no true steady state at which to start nor end.

I extend their idea by having my sequence for the exogenous aggregate variable not be an MIT

shock. Instead of an aggregate variable experiencing a one-time increase that slowly dissipates back

to steady state, I create a simulation of my specified aggregate Markov process for T + 1 periods

such that all individual and aggregate variables in periods 1 and T+1 are the same. This eliminates

the need for a steady state at which to start or end, because it is as if periods 1 through T are

repeated indefinitely.

To accomplish this, I first do one iteration of the backward and forward iteration of Vt and Dt,

respectively, using the steady state created by the transition matrix in equation 25. This will create

V1 ̸= VT+1 and D1 ̸= DT+1. The trick is to update VT+1 to V1 and D1 to DT+1 and continue 1)

performing the backward and forward iteration of the value function and distribution paths, and

2) updating the terminal value function and initial distribution. I stop repeating these steps when

a measure of convergence is reached.

One downside of the Boppart, Krusell, and Mitman (2018) and Auclert et al. (2021) techniques

is that the path of aggregate variable is deterministic and known to the households with perfect

14Following Auclert et al. (2021), I set T = 300. While they suggest this value for a model with quarterly frequency, I still
use 300 instead of the implied 75 for annual frequency to help prevent the randomness of the simulated aggregate path from
significantly affecting results.
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foresight; the households know when each expansion and recession will start and end. However, to

my knowledge, a solution technique for this type of heterogeneous-agent model with aggregate fluc-

tuations that maintains uncertainty at the aggregate level is currently not available. Furthermore,

models utilizing MIT shocks (intentionally) face this same issue. It is important to note that while

there is no uncertainty regarding the aggregate state, uncertainty is maintained with respect to the

individual productivities. While a household may know that an expansion is about to turn into a

recession next period, they still don’t know which idiosyncratic state they will have next period.

They only know the transition probabilities.

Using my new solution method, I can solve the model’s steady state and transition paths for

a given government policy τ(z) and calculate the fluctuating economy’s ex ante expected social

welfare:

(27) Ω =
1

T

T∑
t=1

∑
e, k

DektVekt.

Here I use the phrase ex ante with some abuse of terminology. Strictly speaking, ex ante usually

means all decisions and evaluations are made before any events occur, i.e. before anything is known

about the first time period. However, my solution technique requires the path of all variables to be

recursive after T periods, so there’s no true “first period”. Therefore, I mean ex ante in the sense

that the government will optimize social welfare assuming that there is an equal chance that any

of the T periods could be the first period.15

As social welfare is an ordinal measure, it is impossible to directly compare the value of social wel-

fare in a baseline economy to its value in the corresponding restricted and unrestricted economies.

I alleviate this issue by converting expected life-time utility into more interpretable units by calcu-

lating the consumption equivalent variation (CEV), ω. The CEV in this context is how much every

household in every time period would need to receive, in percentage terms of consumption, to be

ex ante indifferent between living in the baseline economy or in the alternative policy economy. ω

solves

(28)

T∑
t=1

∑
e, k

Dbase
ekt V

base
ekt ((1 + ω)cekt, hekt) =

T∑
t=1

∑
e, k

Dalt
ektV

alt
ekt (cekt, hekt)

where, with some abuse of notation, I’ve rewritten the value function to have the consumption

15A motivation for this interpretation of ex ante comes from extending Rawls (1971)’s “veil of ignorance” idea to mean
making decisions not only based off not knowing what productivity and capital a household will have (i.e. cross-sectional
ignorance), but also not knowing from what moment in time a household will start (i.e. inter-temporal ignorance).



BENNETT: OPTIMAL PROGRESSIVE INCOME TAXATION FOR SKEWED BUSINESS CYCLES 18

and labor policy functions as its inputs. This measure of welfare adjusts for risk, intertemporal

substitution, and mean-reversion in ability.

C. Results

I solve the model six times, three times per productivity process. For each productivity process,

the first scenario is the baseline economy; the progressivity parameters are set to τE = τR = 0.186,

which is the progressivity value used in calibration, and the government is not maximizing social

welfare. The second scenario is where the government’s policy is restricted to be state-independent,

so τE = τR, and chooses one progressivity value to maximize welfare. The third scenario is where

the government’s policy is relaxed to be state-dependent, so τE ̸= τR, and chooses both values to

maximize welfare. The results of these scenarios are in Table 3.

Table 3—Optimal Progressivity Values and Welfare Results

Baseline Restricted Policy Unrestricted Policy

Optimal Progressivity

Johnson’s SU 0.186 0.111 (0.125, 0.072)
Normal 0.186 0.006 (0.011, -0.004)

CEV Welfare Change

Johnson’s SU NA 0.8 0.9

Normal NA 2.8 2.9

Notes: This table reports, for each policy-distribution pair, the values(s) for the optimal progressivity parameter(s) and the
resulting consumption equivariant variation welfare gains. The welfare gains are expressed in percentages. The baseline column
is for reference.

I find that the current degree of income tax progressivity in the US is too high regardless of policy

restriction and innovation distribution. There are positive welfare gains by decreasing progressivity

in every scenario. However, the difference in welfare gains between policy restrictions is much

smaller than the difference in gains between innovation distributions. I consider the former first.

When comparing restricted and unrestricted policy, I find significant differences in progressivity

values. When unrestricted, it is optimal for the government to set progressivity higher in expansions

than in recessions. When restricted, the government, expectantly, chooses to set progressivity

between the two unrestricted values. However, the difference in welfare gains is a relatively small

0.1%, regardless of the innovation distribution. Together, these findings imply the curvature of the

social welfare function Ω(τE , τR) is fairly flat in the neighborhood of the restricted and unrestricted

policy progressivity values but relatively more curved near the baseline. This provides evidence in

support of treating the progressivity of income taxes as an automatic stabilizer like in McKay and
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Reis (2021).

Next, the choice of innovation distribution significantly impacts the optimal degree of progressiv-

ity and the associated welfare change. In the presence of skewed and fat-tailed productivity growth,

the government finds it optimal to lower the income tax progressivity parameter by about 40%,

from 0.186 to 0.111 (for the restricted policy). In contrast, if the higher moments are shut down,

then the optimal parameter for a model using normal innovations is approximately 0.006. With a

progressivity parameter so close to zero, the income tax function is essentially a flat tax for all but

the few extremely productive households. This result is not surprising, since the variance of the

idiosyncratic shocks is approximately constant over time. It is a well-known theoretical result from

similar classes of models that if only the mean of a distribution is shifting, then a flat tax rate is

welfare-maximizing. This theoretical result applies here.

Table 4 shows the responses of several household variables to changes in tax progressivity for

different households with low, medium, and high productivity. Specifically, it reports the average

elasticity of a variable; the average percent change of the variable, in either expansions or recessions,

due to a 1% change in one of the progressivity parameters. The household variables shown are value

functions; consumption, savings, and labor policy functions; and pre-tax and post-tax incomes.

There are several things to note here. First, I look only at the elasticities for the more interesting

case of the economy with non-normal shocks. Second, these are point elasticities: they are evaluated

at the restricted optimal policy of τE = τR = 0.111 to see why the unrestricted policy is to have

higher progressivity in expansions. Third, the elasticities reported are for for households whose

personal amount of capital equals the overall average amount of capital in the economy.

Several findings emerge. Every elasticity is less than one in absolute value, indicating these vari-

ables are inelastic to progressivity changes. This is not surprising, as the progressivity parameters

are at the point in the parameter space where social welfare is maximized with the restraint that

the parameters must be equal. Looking at the elasticities for the value functions, an increase in

expansion progressivity increases the value functions in both expansions and recessions more than

an increase in recession progressivity (for all but the most productive households). This is the

direct reason why the unrestricted optimal policy is to have higher progressivity in expansions.

Furthermore, increasing τE causes a bigger increase in VR than in VE , while increasing τR causes a

bigger increase in VE than in VR. Counterintuitively, increasing redistribution in expansions does

a better job of improving the situation of lower-productivity households in recessions.

The resolution to this paradox comes from how increasing progressivity affects both the pre-

tax income and post-tax income of the low-productivity households (the ones who impact social
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welfare most through their higher marginal utilities). Increasing τE increases both incomes for both

aggregate states, while increasing τR decreases pre-tax income and post-tax income in recessions.

This is interesting because the rationale for having more redistribution in recessions is to increase

post-tax income of the poor at the times when they are worst off, regardless of their pre-tax income

decreasing due to general equilibrium (GE) effects from changes in aggregate variables. I find

that this rationale doesn’t hold; increasing redistribution in recessions leads to the opposite of

the desired result. This comes from the aforementioned GE effects, as an increase in τE changes

aggregate capital KR and output YR in such a way that both the wage rate WR and tax level λR

increase, allowing higher post-tax income, despite the low-productivity households working less.

Table 4—Household Variables

Low e Medium e High e

τE τR τE τR τE τR
VE 0.007 0.004 0.006 0.003 -0.009 0.000
VR 0.010 0.002 0.007 0.002 0.000 -0.009

cE 0.012 0.008 -0.009 -0.003 -0.793 -0.024

cR 0.018 0.003 -0.010 -0.021 -0.071 -0.817

k
′
E 0.002 0.003 0.011 0.001 -0.542 -0.018

k
′
R 0.008 -0.002 0.003 0.003 -0.058 -0.570

hE 0.619 -0.010 -0.031 -0.010 -0.356 -0.010

hR -0.031 0.608 -0.031 -0.042 -0.031 -0.367

λEy
1−τE
E 0.026 0.026 0.036 0.004 -0.727 -0.023

λRy
1−τR
R 0.079 -0.019 0.006 -0.007 -0.072 -0.756

yE 0.025 0.026 -0.010 0.001 -0.366 -0.024

yR 0.079 -0.019 -0.004 -0.030 -0.073 -0.353

Notes: This table reports sets of point elasticities for the minimum, mode, and maximum values of the grid for the discretized
productivity process. The numbers represent the percent change of a household-level variable averaged over expansion periods
or recession periods due to a 1% change in the progressivity parameter for expansions or recessions. These elasticities are
calculated for the economy with the skewed productivity process and evaluated at the restricted optimal policy for households
with an amount of capital equal to the average amount of capital.

Before concluding, I will briefly discuss the aggregate outcomes of the two productivity models.

Table 5 reports the aggregate outcomes for consumption, capital, effective labor, output, labor,

the rental rate of capital, the wage rate of labor, and the level of taxation. First, regardless

of the productivity innovation distribution and whether the government’s policy is restricted or

unrestricted, lowering income tax progressivity from the current US value leads to higher aggregate

consumption, capital, and output. This increase in production also has the general equilibrium

effect of letting the government lower the average level of taxation, despite the increased output

causing required government expenditure to rise. All this provides evidence that the US may

on average be on the undesirable right side of the Laffer curve, and cutting taxes can increase

government revenue.
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Table 5—Aggregate Variables

Johnson’s SU Distribution Normal Distribution

Baseline Restricted Unrestricted Baseline Restricted Unrestricted

CE 0.973 9.75 8.90 0.975 18.38 18.10

CR 0.921 9.10 11.08 0.963 18.12 18.68

KE 4.618 14.83 14.65 4.706 24.77 24.77
KR 4.289 15.33 15.50 4.444 25.65 25.72

LE 1.042 9.26 8.06 1.001 17.77 17.43
LR 0.866 8.88 11.89 0.974 17.88 18.55

YE 1.777 11.24 10.40 1.743 20.25 20.03

YR 1.516 11.14 13.15 1.670 20.63 21.10
HE 0.815 5.52 5.07 0.881 12.70 12.53

HR 0.779 6.65 8.34 0.866 13.15 13.50

RE 0.139 -3.14 -3.72 0.133 -3.65 -3.82
RR 0.128 -3.70 -2.13 0.135 -4.04 -3.72

WE 1.098 1.81 2.15 1.122 2.10 2.21

WR 1.174 2.18 1.26 1.122 2.33 2.14
λE 0.796 -1.78 -1.10 0.763 -5.49 -5.21

λR 0.742 0.25 -0.75 0.754 -4.36 -4.89

Notes: The two baseline columns report the value of the aggregate variables averaged over expansion periods or recession
periods. The values are relative to the normalization of L = 1 in steady-state as mentioned in section III.A. The other four
columns report the variables’ percent changes from their respective baseline for each policy-distribution pair. H is the aggregate
household labor. This is distinct from the aggregate effective labor L, as H doesn’t incorporate household productivity.

Second, while also present when assuming a normal distribution, the aggregate variable changes

show distinct differences between the restricted and unrestricted policy for the Johnson’s SU . Be-

cause progressivity is substantially lower in recessions than in expansions with the unrestricted

policy, I observe consumption, capital, effective labor, output, and labor having a larger percent

increase in recessions than in expansions.

Finally, in all scenarios, due to the large increase in the supply of capital—the most changed

aggregate variable—the rental rate falls. However, even though the supply of labor increases, the

capital-labor ratio also increases, causing the wage rate to rise.

IV. Conclusion

This paper asks how a utilitarian government that puts equal weight on all households in the

economy should vary income tax progressivity between expansions and recessions. My findings show

that taxes should be more progressive in expansions than in recessions, but the difference is minor

compared to the overall degree of progressivity. The overall progressivity should be approximately

40% lower than the historical average in the US.

This optimal level of progressivity heavily depends on the distribution of shocks to individual

productivity growth. When shocks come from normal distributions—the standard assumption in

most business cycle research—the optimal policy is to have the income tax function be close to a
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flat, proportional tax rate. This is a common result from many papers in related literature, and

implies significant welfare gains given the US’s current degree of progressivity. However, if shocks to

productivity growth are left-skewed and fat-tailed, i.e. negative shocks are uncommon but likely to

be very large while positive shocks are common but likely to be small, then the optimal policy is still

to lower progressivity but not to the extreme of having income taxes be close to proportional. By

misspecifying the model to have normal innovations, welfare gains are tripled from approximately

1% to 3%. Policy recommendations by research that ignores the higher moments of income growth

innovations may significantly overstate the policy’s effects and desirability.

V. Appendix

A. Johnson’s SU Distribution

The Johnson’s SU -distribution is a four-parameter probability distribution first investigated by

Johnson (1949) and used in various economics and finance papers such as Cayton and Mapa (2015),

Kar et al. (2024), and Choi and Min (2025). The choice of using Johnson’s SU in this paper is for

convenience but is somewhat arbitrary, as there exist other four-parameter distributions that can

also be used to generate skewness and kurtosis.

By adequately transforming the normal distribution, the distribution can allow for any amount

of skewness and positive excess kurtosis.16 If

(29) X = ζsinh

(
Z − γ

η

)
+ ξ

and Z ∼ N (0, 1), then X ∼ SU (ξ, ζ, γ, η), where ξ and γ are any real numbers and ζ and η are

real numbers greater than zero. λ and δ are the standard symbols used, not ζ and η, respectively,

but those letters were already used in this paper to represent their standard meanings in similar

economic models. ξ controls the mean, ζ controls the variance, γ controls the skewness, and η

controls the kurtosis. Closed-form expressions for the parameters as functions of the four moments

are not available and numerical methods are required to calculate them.

The distribution’s probability density function (PDF) is given by

(30) p(x|ξ, ζ, γ, η) = η

γ
√
2π

1√
1 +

(
x−ξ
ζ

)2
e
− 1

2

(
γ+δsinh−1

(
x−ξ
ζ

))2

with a support of −∞ to ∞.

16Johnson’s SB (different from SU ) distribution is used for negative excess kurtosis.
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B. Productivity Process Discretization

Table 6—Individual Productivity Process Parameters

SU Distributions Normal Distributions

Parameters Value Parameters Value

ρ 0.5 ρ 0.5

ξEE -0.997 µEE -0.192

ζEE 0.214 σEE 0.395
γEE 0.672 µRE -0.317

ηEE 1.050 σRE 0.477

ξRE -1.829 µER -0.325
ζRE 2.054 σER 0.400

γRE -1.462 µRR -0.138

ηRE 4.959 σRR 0.415
ξER -1.663

ζER 6×10−5

γER 0.920
ηER 0.376

ξRR -0.611
ζRR 0.089

γRR 1.391

ηRR 0.972

Notes: ρ is set to exactly match the Guvenen, Ozkan, and Song (2014)’s estimate of income growth autocorrelation, -0.25.
The other parameters are found using an adaptive differential evolution global optimization algorithm to solve the moment
matching problem described in section III.A.
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